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periodic problems (called NCCD henceforth) that simultaneously evaluates first and
second derivatives, improving an existing combined compact difference (CCD) scheme.
Following the methodologies in Sengupta et al. [T.K. Sengupta, S.K. Sircar, A. Dipankar,
High accuracy schemes for DNS and acoustics, ]J. Sci. Comput. 26 (2) (2006) 151-193], sta-
bility and dispersion relation preservation (DRP) property analysis is performed here for

Iézmoi;ﬁ'j compact difference scheme general CCD schemes for the first time, emphasizing their utility in uni- and bi-directional
DRP property wave propagation problems - that is relevant to acoustic wave propagation problems. We
Uni-and bi-directional wave propagation highlight: (a) specific points in parameter space those give rise to least phase and disper-
Stommel Ocean model sion errors for non-periodic wave problems; (b) the solution error of CCD/NCCD schemes
Navier-Stokes solution in solving Stommel Ocean model (an elliptic p.d.e.) and (c) the effectiveness of the NCCD
Lid-driven cavity problem scheme in solving Navier-Stokes equation for the benchmark lid-driven cavity problem at
Boundary layer high Reynolds numbers, showing that the present method is capable of providing very
accurate solution using far fewer points as compared to existing solutions in the
literature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Compact difference schemes have been proposed for applications requiring high accuracy computing [1-6]. These
schemes approximate operators using implicit stencils with relatively large grid spacing, due to their spectral-like resolution
[1]. Compact schemes require fewer grid points, due to favorable properties of numerical stability and dispersion relation
preservation (DRP) [3,5,14]. In these references, various schemes have been analyzed for DRP property in terms of numerical
group velocity for wave propagation problems [7-9].

Compact representation can be obtained separately for first and second derivatives (as in [1]), or the derivatives can be
obtained simultaneously using Hermitian polynomials [2,10-12]. These schemes are referred to as the CCD schemes [2,6,11].
The second derivative can also be computed by applying twice the compact schemes for evaluating first derivative. This how-
ever, leads to poorer scale resolution at high wave numbers and therefore is not recommended. In many of the cited refer-
ences, a rudimentary analysis depicting scale resolution of the schemes based on Fourier series representation is provided
[1,11]. The analysis in [3-5,14] is an exception, where additional properties fixing phase and dispersion errors are obtained
with the help of numerical group velocity and phase speed. The same analysis is performed here for the CCD schemes for the
first time.
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Computations for simulating complex physics problem do not always fully explain the causality. Whether such failures
are due to the complexity arising out of space-time dependent nonlinear dynamics and/or inadequacy of the computing
method is not fully understood yet. A recent study [14] identified mechanisms for solution breakdown of linear equation
to be related to numerical properties — those have been attributed earlier to nonlinearities. CCD schemes for non-periodic
problems also require a thorough analysis for wave propagation problems. For this purpose, we look at the one-dimensional
linear convective equation,

e -0, c>o0. (1)

This is an example of signal propagation, where the solution convects downstream without dispersion. The inaccuracy of the
computed solution for this problem is not due to nonlinearity - although not all the aspects of the solution are revealed - as
noted in [9]. Recently it is reported in [14] that the loss of accuracy is due to common properties shared by all discrete com-
putational methods. The method for analyzing discrete methods with Fourier-Laplace transforms [5,14] is invoked in this
paper. This provides a yardstick to compare disparate methods. The unknown is expressed in the wave number (k) plane
by, u(x,t) = [U(k, t)e*dk, such that an amplification factor can be introduced as G(k) = U(k, t + dt)/U(k, t). For direct numer-
ical simulations one must have a neutrally stable method. For Eq. (1) the group velocity (V) is equal to the phase speed c and
this physical principle must be obeyed by any numerical method. The analysis for any discrete computation shows that the
numerical solution uy satisfies a different equation. More specifically, the constant ¢, becomes wave number dependent. It is
important to correctly define the numerical error as e = u — uy, as is shown in [14]. In most of the text books and mono-
graphs (as in [13,16]), the error is defined as the difference between a fictitious exact solution of the discrete equation
and the numerical solution. In the process, it is wrongly concluded that the same discrete equation is followed by the solu-
tion and the error. The correct error propagation equation is given by [14],

% + C% = _C [] _ C?N] a@i}?’ _ /w |:/ ik/AOHG”t/Atelk (X*CN[)de:| dk — /%AoHGHt/Atelk()FCNt)dk' (2)
In the above, Ay (k) denotes the Fourier amplitude of the initial condition and cy is the numerical phase speed. One notes that
Eq. (2) is very generic and exact — unlike the one obtained using modified equation approach [15-20]. In modified equation
approach, one accounts for truncation error by collating and representing the discretized terms in the difference equation by
their equivalent differential forms. The resultant modified equation depends upon the method of discretization. In contrast,
Eq. (2) clubs error based on generic stability and DRP properties.

If a numerical scheme is neutrally stable, then the last term on the right-hand side of (2) would not be present. The first
term on the right-hand side of (2) is due to phase error, with respect to the mismatch between numerical and actual phase
speed. The second term on the right-hand side quantifies the spurious dispersion effect created by numerical methods. Eq.
(2) replaces the widely used von Neumann stability analysis given in [21,22] as the correct error propagation equation. This
feature of scientific computing is unique and not shared by any analytical methods of mathematical physics and is brought
out the first in [14].

In view of the above, one would estimate the properties of CCD in solving both the uni-directional and bi-directional wave
problems. In the former, one requires very accurate first derivatives, while in the latter the second derivatives have to be
correct. The paper is formatted in the following manner. In the next section, analysis of CCD schemes is presented for
non-periodic problems and some stability problems of CCD schemes are identified which are related to boundary closures.
In Section 3, NCCD scheme is developed and used in solving uni- and bi-directional wave propagation problems with non-
periodic boundary conditions. In Section 4, the results for the Stommel Ocean model using the present NCCD scheme are
reported. The development of a boundary layer over a flat plate and the flow inside a lid-driven cavity are investigated in
Section 5 by solving Navier-Stokes equation, as an illustration of NCCD scheme’s utility in solving initial-boundary value
problems.

2. Combined compact difference (CCD) scheme for non-periodic problem

The CCD schemes described in [2,11] obtain simultaneously the first and second derivatives (f/,f"), in terms of the func-
tion (f;) defined in a uniform grid of spacing h, from the following discrete equations for j = 2 to N:

7 ! ! ! h 1" 1" 15

16 Wi i) +ff =3 i =20 = 15 B = -0 3)
9 ! ! 1 " " " 3

sh j+17j—1)7§ il + 54 + £ =ﬁ(ﬁ+l*2fj+fj—l)- (4)

If we consider Dirichlet boundary conditions at j =1 and N + 1 then there are 2N + 2 unknown derivatives, with four un-
knowns contributed from the nodes atj = 1 and N + 1 for the derivatives. Thus, one would require four additional equations
and in [2] they were given by,
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function in spectral plane to compare scale resolution ability of different methods.
ox lexact
a

7)
The multiplicative constants in the above equations are fixed by matching Taylor series expansion coefficients up to the sixth
order. Thus, we have a complete linear algebraic system for the evaluation of first and second derivatives. We express the
The exact first spatial derivative of u is given by,
tial derivative u’ by,

= ikUe™ dk. Discrete computing methods obtain the same spa-
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Fig. 1. (a) (i) Scale resolution given by real part of k., /k for first derivative and (ii) effectiveness of dissipation term representation given by the real part of
71<‘§1>/k2 are plotted against non-dimensional wave number. (b) (i) Dissipation as given by imag. part of k., /k for first derivative and (ii) dispersion as given
by imag. part of —kfj]) /k2 for second derivative, plotted against non-dimensional wave number.
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u = [ ikeqUe™ dk 9
[ j]numeriml - eq . ( )

The quantity keq/k is in general complex, with real part represents the numerical method’s ability to resolve different
scales, while the imaginary part adds numerical dissipation, when it is negative. A similar procedure is adopted for the sec-
ond derivative, with the real part of k,fz) /k? represents the scale-wise dissipation term, while the imaginary part represents
additional dispersion error.

We extend the full-domain Fourier-Laplace analysis of [3,5], with 31 points and compare the above quantities for the first
and second derivatives in Fig. 1. In this figure, CCD is compared with an optimized compact difference scheme OUCS3 [3] and
the explicit second order central difference scheme (CD;) in the range (0 < kh < 7). For the evaluation of second derivative,
we have included the method due to Lele [1] that obtains this independently.

Fig. 1(a) shows the real part of k., /k and —k(e? / k? at interior and near-boundary nodes for the three schemes. The CCD [2]
and the OUCS3 [3] schemes have resolution that is an order of magnitude higher than the CD, scheme for the first derivative.
For near-boundary points (j = 2 and 30), CCD method shows overshoot of k., /k that can cause instability at high wave num-
bers. The second order accurate OUCS3 scheme shows better resolution for the first derivative, as compared to the formally
sixth order accurate CCD scheme for the interior nodes. This is due to the fact that OUCS3 scheme is obtained by optimization
of error in the k-space. The displayed —kfjﬂ /k* of three methods have the compact difference scheme of Lele [1] that evaluates
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second derivative directly. It is noted that unlike the first derivative, —kfj,) /k* does not become zero at the Nyquist limit
(kh = m) for the interior nodes. CCD method over-estimates second derivative at higher wave numbers and can be a source
of error. However, up to kh = 1.6 the dissipation is represented exactly for the interior nodes. It is noted that for the near-
boundary nodes at j = 2 and 30, CD, method provides better dissipation discretization property at high wave numbers as
compared to the compact schemes. For the low wave numbers the compact schemes are far superior for all nodes. At inter-
mediate wave numbers, CCD has better dissipation property as compared to Lele’s scheme [1]. For internal flows, this feature
of CCD may turn out to be useful, as we will show for the lid-driven cavity problem at high Reynolds numbers.

In Fig. 1(b), we show the imaginary part of ke/k and —k2'/k* for the indicated methods. For the first derivative, this
amounts to addition of numerical dissipation or anti-diffusion as shown in the frames indicated by (i) in the figure. For
the interior nodes, as shown by the top left frame the methods are perfectly non-dissipative. However, for j = 2, both OUCS3
and CCD methods are unstable, while they are very dissipative at j = 30. For the second derivative, all the methods are ex-
tremely good for the interior nodes without adding any spurious dispersion, as shown in bottom left frame. However, both
the CCD and Lele’s scheme add spurious dispersion at the nea-boundary points with opposite features. There are no prob-
lems of spurious dispersion by CD, method.

Next, one would be interested in finding out the ability of these methods in producing accurate solutions for different
types of partial differential equations that would require knowledge of numerical properties of these methods.

2.1. Other numerical properties of compact schemes

To investigate for the ability to obtain accurate solutions without error, we calibrate CCD and OUCS3 schemes by solv-
ing the 1D convection equation (1). To achieve high accuracy of the solution, we employ four-stage Runge-Kutta
method for time-advancement. A brief description of the analysis method [5,14] to obtain essential numerical properties
follows.

Numerically first derivative can be estimated as, {u’} = 1 [C]{u}. Using the spectral representation, this can also be alter-
natively written for the jth node as,

N
U= /% ;CﬂU(k, t)elkxi=x) ek e (10)
The stability property for solving Eq. (1) is obtained from,
du cdt] SN -
o[]S

On the left, dU represents variation of U when time is advanced by dt. The first factor on the right-hand side is the well-
known CFL number (N¢). The nodal numerical amplification factor (G;) was obtained for the four-stage Runge-Kutta time
integration scheme in [14] as,

Got1-a AN (12)
d ity 6 g

where A; = N.3"), Cyelktu—),
If we represent the initial condition for Eq. (1) as

u(xj, t=0)=u) = /Ao(k)e”‘*f dk, (13)
then the general solution at any arbitrary time can be expressed as,

@:/%wmmwvww, (14)
where |G| = (G} + G})"/* and tan(;) = — ¢&. Here, G; and Gj are the real and imaginary parts of G;, respectively. Thus, the

phase of the solution is determined by np; = kcyt, where cy is the numerical phase speed, as defined in (15). This shows that
the numerical phase speed is wave number dependent i.e. the numerical solution is dispersive, while the actual solution is
non-dispersive.

The numerical dispersion relation is given by wy = cyk, instead of the physical dispersion relation, @ = ck. The non-
dimensional phase speed and group velocity at the jth discrete node can be expressed as [5,14],

-4 1)

cli  wAt’
{VgN} 1 dﬂj
j

¢ |, BN dk (16)
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Fig. 2. Comparison of numerical properties for OUCS3 [3] and CCD [2] schemes, in determining error propagation as given in Eq. (3): (a and b) numerical
amplification contours; (¢ and d) non-dimensional numerical phase speed contours; (e and f) non-dimensional numerical group velocity contours and (g
and h) dispersion error term in Eq. (3), (Vv — cn)/k.

In Fig. 2, we have compared the properties of OUCS3 and CCD schemes in (kh — N.) plane for an interior node. The |G| con-
tours are shown in panels (a) and (b). One notes the hatched region (for small values of N.), where both the methods are
neutrally stable for the full range of kh — as desirable for DNS.
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In the panels 2(c) and 2(d), the scaled numerical phase speed of the two methods are compared. From the first term on the
right-hand side of Eq. (2), we note that the numerical phase speed will not cause error when cy/c is identically one. For CCD,
a region for small kh values exists where this error is absent. For OUCS3 method at very low values of N, there is a small arc
between kh = 1 and 2, where cy/c is exactly equal to one. Such differences can be used to minimize error by appropriate
choice of kh and N..

In panels (e) and (f) of Fig. 2, the scaled numerical group velocity contours are shown. Ideally, the ratio Vgy/c should be
equal to one for solving Eq. (1). It is noted that for CCD this occurs for very small values of kh and N,, while for OUCS3 it
occurs inside a small arc around kh = 1. Thus, CCD has lower dispersion in comparison to OUCS3 scheme. We note from
the second term on the right-hand side of Eq. (2), the integrand for the dispersion error depends on (Vgv — cy)/k and this
quantity is shown in frames (g) and (h) of Fig. 2.

3. Solving wave propagation problems

Numerical properties of Fig. 2 determines the levels of error and a careful test is designed to solve Eq. (1). To obtain lower
error, we have used a value of N. = 0.01, so that neutral stability is ensured that makes the third term on the right-hand side
of Eq. (2) identically equal to zero. To highlight the importance of phase and dispersion errors, the propagation of a discon-
tinuous ramp function (shown in Fig. 3(a)) is considered that will excite a wide band of wave numbers due to slope discon-
tinuities. The ramp angle considered is very small (36°) that makes the first term on the right-hand side of Eq. (2)
unimportant. Larger ramp angles cause higher 5 %y that magnifies phase error, giving rise to oscillations near discontinuities
(Gibbs’ phenomenon). From the plotted errors 1n Flg 3(b) at t = 0.01, one notes the oscillations originating at the points of
slope discontinuities at the foot and the shoulder of the ramp. These discontinuities are responsible for very high wave num-
ber components. In the following frame (at t = 0.10) one can identify the upstream propagating error-packets from the dis-
continuities for both the methods for wave number components with kh > 2.5. The panels (e) and (f) of Fig. 2, show that
Vgn/c is negative for these methods. Thus, these error components (with kh > 2.5) travel in the upstream direction. The ac-
tual signal propagation speed for the case considered is ¢ = 1. One notes the upstream propagating components traverse a
distance of 4 by t= 0.8, with the leading packet arriving at the inflow for the OUCS3 scheme. For CCD scheme the arrival time
is slightly lower. It can be explained why the maximum error for OUCS3 is lower than that for CCD scheme from the infor-
mation contained in Fig. 3(c). For the present propagation problem, the dispersion error is contributed by the second term on
the right-hand side of Eq. (2) for which the integrand consist of the term (Vgv — ¢)/k. For the OUCS3 method, (Vv — ¢)/k
changes sign and there is cancellation of error at small wave numbers (shown in the inset of Fig. 3(c)). For the CCD method,
this term is relatively high at medium to high wave number ranges, causing higher error.

Another important difference is noted when the upstream propagating error reaches the inflow of the domain. This re-
lates to the numerical properties for the near-boundary points. Upon reflection, the upstream propagating error reflects
as the complement of the incident wave ((kh),opecred = T — (KN)incigene »» @S @ low wave number downstream propagating wave.
For the CCD method, such downstream propagating waves are unstable at j = 2 and 3 - as noted in Fig. 3(b) for t = 0.8, near
the inflow. This gives rise to high magnitude error at the inflow for the CCD method. One does not see such error growth for
the OUCS3 method. Such numerical instabilities noted for CCD is also accompanied by massive attenuation near the outflow.
Both these problems of instability and attenuation, prompted us to develop an improved CCD scheme as given in the next
subsection.

3.1. A new combined compact difference (NCCD) scheme

Ideas followed here are essentially the same that were used in [3,5] in developing a new compact scheme with no numer-
ical instability near the inflow and excessive attenuation near the outflow. But before we discuss about stability, let us look at
the resolution and added diffusion via the spatial discretization of first derivative alone. In Fig. 4(a), the real and the imag-
inary parts of keq/k are shown on the left column for the CCD scheme. The real part shows an overshoot for k., /k at j = 2 and
30, that can potentially lead to large error. The imaginary part of k., /k shown in the lower left frame of Fig. 4(a) shows that
this is very high and positive-indicative of massive addition of anti-diffusion at j = 2 and 3. Because of the antisymmetric
nature of Eqs. (7) and (8), as compared to Eqgs. (5) and (6), we see massive added dissipation at j = N and N + 1. One also
notices zero imaginary part of k.,/k for the interior nodes - due to perfectly central stencils of CCD, as given in Egs. (3)
and (4). Thus, CCD has good properties in the interior with problems near the boundaries.

In the proposed NCCD scheme, we replace the boundary closure schemes (Egs. (5)-(8)) by the following explicit stencils
for the nodes at j =2 and N [23]:

f=5 | (5= 5)f— (R g+ (@t 15— (P g )i+ 526 . (a7)
fu=- h[(zﬂi)fw—(%+ 3V @ s = (B0 e+ 2. 1)
— (= 2f, + F5)/1 (19)

N = (v = 2f g +fuo1)/h K’ (20)
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Fig. 3. Propagation of a ramp signal (a) following Eq. (1); (b) error evolution with time for OUCS3 [3] (left) and CCD [2] (right) schemes and (c) detailed
variation of (Vgy — cy)/k vs k for these two methods.
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Egs. (3) and (4) were used in addition to the finite difference equation. This was possible due to the Dirichlet conditions at
the boundary.

We can write the NCCD stencils given by Egs. (3), (4) and (17)-(20) as,

[A{u}’ + [Bi){u"} = [Ci){u},
[Aa{u'} + [Bo[{u"} = [G{u}.

On solving these two simultaneous equations we arrive at,
|
{u't= H[Dl}{uh

3 =h]7[D2HU}7

where
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[D1] = (1A1] — [B1][Ba] ' [Aa]) " (IC1] — [B1][Ba] ' [Ca)),
D] = ([B2] — [A2][A1] " [B1)) " ([Ca] — [Aa][Ad] ' [CH)),

keq/k and kg) /I for first and second derivatives are evaluated using,

N+1

1
(keg/k); = kh ;[Dl]ijUy

N+1

-1
(kh)? ;[Dz}ﬂpm

2) 1,2
(keg /%)y =
where j defines the node number and
p; = eil-ik,
The effectiveness of dissipation discretization by CCD and NCCD schemes have been compared in Fig. 4(b). There appears to
be no difference between the two methods for the interior nodes. However, the noted problem of lack of dissipation at higher

wave numbers for the near-boundary points for the CCD scheme has been removed significantly by the NCCD scheme.
Although, the dispersion effects for the NCCD scheme has become worse.
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Fig. 5. (a) Neutral |G| contour for Lele’s scheme [1] (top) and NCCD (bottom) for solving Eq. (21). Critical CFL number (Nc") identified for both the modes of
these methods. (b) Solution of Eq. (21) for the propagation of a wave packet by NCCD scheme (right) and Lele’s scheme (left) [1].

In Fig. 4(c), the numerical solution of Eq. (1) is compared between CCD and NCCD schemes at t = 0.8. In the bottom panel,
the results for NCCD scheme shows a small reflection of the error-packet, similar to that noted for OUCS3 scheme. This error
is few orders of magnitude smaller as compared to that seen for CCD scheme shown in the top panel.

Next, we find out the efficacy of NCCD in evaluating second derivatives. This is done here by solving bi-directional wave
equation and comparing the solution with the results obtained using the compact scheme due to Lele [1] that evaluates sec-
ond derivative separately. The bi-directional wave equation solved here is given by,

ou ou
52 c? Fvi 0. (21)

Lele’s scheme for second derivative [1] was also compared with the SOUCS3 scheme in [24] - a symmetrized version of the
0UCS3 scheme, for solving Eq. (21). Here, we compare the numerical stability property of NCCD scheme with Lele’s scheme
[1] first and then we will compare the computed solution of (21). In Fig. 5(a), |G|-contours for these two schemes are shown
demarcating the stable and unstable regions in the (kh — N.)-plane, when the time derivative is discretized by leapfrog
scheme. Because of the usage of the three-time level method one would have two modes of the numerical solution for which
the region outside the curve (towards the origin) is neutrally stable for both the modes. The region inside the curve is stable
for the Mode-1 and is unstable for the Mode-2. This is true for both NCCD and Lele’s scheme. These figures also identify a
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critical CFL number, below which the methods are perfectly neutrally stable. It is noted that for Lele’s scheme, this is higher
at N7 = 0.7519, as compared to N7 = 0.6355 for NCCD scheme. It was noted that for the symmetrized SOUCS3 scheme [24],
N; = 0.8736 was higher and the same could be done for NCCD scheme as well.

Both the schemes have been used to solve Eq. (21) for ¢ = 1 with the initial condition given by, u(x, t = 0) = 2e~ ' cosk,x,
with kg = 50, in a domain —3 < x < 3 with 601 equi-spaced points. The time step chosen was At = 0.005, so that N, = 0.5.
The computed solutions are shown in Fig. 5(b) at selected time instants and these two methods produce identical results. We
furthermore note both the methods suffer no problems when the signal reflects from the boundaries, as noted from the solu-
tion at t = 2.5. However, with the CCD scheme, we would have large error when the signal reflects at the boundaries.

4. Solving the Stommel Ocean model problem

This problem was solved in [2] to establish the superiority of CCD over standard second order central difference scheme.
The model problem involves solving the following equation given in Cartesian coordinates-ordinates as,
{62 & o

. (T
W+E)—y2 z//+oc§:—ysm(5y>. (22)

Here x and y are the longitudinal and latitudinal coordinates-ordinates in the range 0 < x < Aand 0 < y < b for an Ocean at
rest with depth D, that is set in motion by surface wind stress given by —Fcos(my/b). The latitudinal variation of the Coriolis
parameter f is defined by p = df /dy, that is used in the model equation (22), with « = DB/R and y = Fr/Rb, where R is the
frictional coefficient. The analytical solution of (22) is given by [2],

b\? .
Y= ”(E) sin(%) (et + (1 - ppet - 1), (23)
where A;, = —2 : /< +Z—§ and p = (1 — ef?)/(eM? — ef2?),

To solve Eq. (22) by NCCD, we have chosen the same parameters used in [2] and they are: i=10"m;b=
21 x 10° m;D =200 m;F = 0.3 x 107’ m?s—2 and R = 0.6 x 107> m s~!. We will show a results for = 107" m~! s~1, as also
was given in [2].

In Chu and Fan [2], Eq. (22) was solved by using ADI method with Dirichlet condition on the boundary. In the first half-
step of ADI, v, dy/0x and 8y /9x? are treated as unknowns at the (N — 1) interior points. Rest of the derivatives are treated as
knowns, obtained from the usage of Egs. (3) and (4) and the finite difference equation. This closes the system without the
need to use boundary closure schemes of Egs. (5)-(8). In the next half-step of ADI also, the boundary closure schemes were
not used. In contrast to this approach, we have used the Bi-CGSTAB algorithm of [25] as applied to the linear system arising
from discretization, while treating the function and its derivatives as unknowns. The derivatives have been obtained up front
with the help of Egs. (3),(4) and (17)-(20). Thus, the boundary closure schemes are in-built while evaluating the derivatives
in the present method. As the exact solution is available, it is easy to monitor the convergence of the computed solution, as
performed in [2]. However, we have followed the often-practiced strategy of tracking the convergence by evaluating the

y (xlOOm)

X (xlOém)

Fig. 6. Computed solution for Stommel Ocean model with g = 10"!" using NCCD scheme with (201 x 201) grid. Exact [2] and computed solutions are
indistinguishable here.
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Table 1

Convergence history and the error obtained in solving Stommel Ocean model ( = 10™"") for different grids using NCCD.

Grid size Error CPU time (s) Number of iterations
9x9 1.020 x 107# <1 27

10 x 10 1.940 x 108 <1 24

14 x 14 6.433 x 107° <1 27

20 x 20 1.164 x 10~° <1 43

30 x 30 1.073 x 107° <1 67

50 x 50 6.946 x 107° 1.2 122

100 x 100 2217 x107° 5.1 264

151 x 151 2279 x 107° 40.5 424

201 x 201 5.490 x 10710 180.0 575

Table 2

Maximum and minimum values of stream function computed by different methods for Re = 1000.

S. No Methods and grids Vinax Wimin

1 Botella and Peyret [27] (N = 160) 0.1189366 —-1.729717 x 1073
2 Ghia et al. [26] (129 x 129) 0.117929 ~1.75102 x 1073
3 Bruneau and Saad [28] (129 x 129) 0.11786 —~1.7003 x 103
4 Present work (129 x 129) 0.118561 —1.71902 x 1073
5 Present work (150 x 150) 0.118714 ~1.72181 x 1073
6 Present work (180 x 180) 0.118821 —1.72269 x 1073
7 Present work (210 x 210) 0.118873 ~1.72434 x 103
8 Present work (257 x 257) 0.118908 —-1.72577 x 1073
9 Bruneau and Saad [28] (1024 x 1024) 0.11892 ~1.7292 x 1073

solution residue at each point of the domain (R;), defined below. We have used the residue per point as the convergence
criterion here. The residue is obtained from,

Ry = Vzt//+ocg—ﬁ+ysin<%)h. (24)
We have solved the problem using a uniform grid. In Fig. 6, the computed and exact solution appear together and are indis-
tinguishable. The convergence history of the solution is shown for different grid size in Table 2. One notices the residue to
converge up to eighth to tenth decimal places. Even for the coarsest grid, one obtains eight digit accuracy in a fraction of a
second. One interesting aspect of convergence history is that the average residue improves with grid refinement up to the
grid of size (30 x 30) and further grid refinement shows increased residue abruptly. Similar reduction in residue was also
recorded in [2] up to a grid of size (27 x 27). However, further refined grid solution was not presented in [2]. In the present
exercise, when solution was obtained with further refined grid, we notice a local minimum for the (30 x 30) grid. However,
when the grid size was progressively refined to (201 x 201), we again obtained very accurate solution, with residue decaying
to tenth decimal place.

5. Solving the 2D lid-driven cavity problem

The flow inside a lid-driven cavity constitutes a classical benchmark problem, due to its unique boundary conditions that
allow comparing any new method’s potential for solving Navier-Stokes equation for internal flows. While there are many
papers on this topic, here we refer to the oft quoted results in Ghia et al. [26] and Botella and Peyret [27] to compare our
results obtained using NCCD. We also refer to Bruneau and Saad [28] and Pandit et al. [29] those reporting accurate results
for the same problem. While in [28] the first Hopf bifurcation is identified via a study of the linearized problem, Pandit et al.
[29] reports the results by using a fourth order compact scheme. Of course, the results in [26,27] are still considered as accu-
rate results for the lower Reynolds numbers. Of specific interest is the results of Botella and Peyret [27] who provided the
highly accurate solution to the problem using Chebyshev collocation spectral method. We would refer to their results for
Re = 1000 with N = 160 terms Chebyshev polynomial representation.

Here the two-dimensional viscous flow as governed by the Navier-Stokes equation is solved in stream function - vorticity
formulation given in non-dimensional form by,

VY = -0, (25)
99 v v - L0 (26)
ot " Re ’
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Fig. 7. (a) Stream function contours for lid-driven cavity problem with Re = 1000 and (129 x 129) grid using NCCD scheme (top) compared with the
computations of Ghia et al. [26] (bottom). (b) Vorticity contours for lid-driven cavity problem with Re = 1000 and (129 x 129) grid using NCCD scheme
(top) compared with the computations of Ghia et al. [26] (bottom). (c¢) Comparison of u-velocity along the vertical centerline of the lid-driven cavity for
NCCD scheme with (129 x 129) grid and computations of Ghia et al. [26] with (129 x 129) grid for Re = 1000. (d) Comparison of z-velocity along the
horizontal centerline of the lid-driven cavity for NCCD scheme with (129 x 129) grid and computations of Ghia et al. [26] with (129 x 129) grid for
Re = 1000.

where o is the out of plane component of vorticity and the velocity is related to the stream function by V = V x , where
¥ = (0,0, ). The y—w formulation is preferred here due to its inherent accuracy and computational efficiency in satisfying
mass conservation exactly everywhere. We have used the sides of the square cavity as the length scale and the constant
velocity with which the top lid is driven from left to right, as the velocity scale. The time scale is derived from these two
scales. As we intend to use NCCD scheme for solving Eqs. (24) and (25), we will use a uniform grid so that the Laplacian oper-
ators can be expressed in terms of pure second derivatives.

In Fig. 7, we show the results for the case of Re = 1000, alongside similar results reported in [26] using identical uniform
grids. These results are obtained using a (129 x 129) grid, with first and second derivatives obtained by NCCD scheme in
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Fig. 7 (continued)

solving both the stream function equation (SFE) and vorticity transport equation (VTE). We have used the Bi-CGSTAB method
of [25] in solving the SFE. The VTE is solved using four-stage Runge-Kutta time discretization and the NCCD for spatial
discretization. The solution is advanced in time till the time derivative of w is reduced to 107'° for Re < 3200 i.e. we have
truly steady state results for the results shown in Figs. 7 and 8. However, for the case of Re = 10, 000, we show multi-periodic
solution in Figs. 9 and 10. In Fig. 9, we compare the results obtained using NCCD and Lele’s scheme for the evaluation of var-
ious derivatives. In Fig. 10, the results obtained by NCCD method will be compared with the very fine grid calculations of
[28].

In Fig. 7(a), our computed solutions shown in top are compared with the results of [26] in the bottom. It is clearly evident
that there is excellent qualitative match between the two sets of results. The primary and secondary vortices are captured
identically by the present method as compared to that in [26]. In Fig. 7(b), the computed vorticity contours are compared
between the present computations with that given in [26]. Quantitative comparison between the present and the computed
results from [26] are provided in Fig. 7(c) and (d). In Fig. 7(c), the x-component of velocity along the vertical centerline is
plotted and this shows perfect match between the present results with that from [26]. The y-component of velocity along
the horizontal centerline is plotted in Fig. 7(d) and one can once again note perfect match between the present computation
with that reported in [26]. Further quantitative match between present computations with other benchmark results will be
provided in Table 2.
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Fig. 8. (a) Stream function contours for lid-driven cavity problem with Re = 3200 using NCCD scheme with (81 x 81) grid (top) compared with the
computations of Ghia et al. [26] with (129 x 129) grid (bottom). (b) Voricity contours for lid-driven cavity problem with Re = 3200 using NCCD scheme
with (81 x 81) grid (top) compared with the computations of Ghia et al. [26] with (129 x 129) grid (bottom). (¢) Comparison of u-velocity along the vertical
centerline of the lid-driven cavity for NCCD scheme with (81 x 81) grid and computations of Ghia et al. [26] with (129 x 129) grid for Re = 3200. (d)
Comparison of z-velocity along the horizontal centerline of the lid-driven cavity for NCCD scheme with (81 x 81) grid and computations of Ghia et al. [26]
with (129 x 129) grid for Re = 3200.

In Fig. 8, we have similarly compared our results using a grid of (81 x 81) with that from Ghia et al. [26] who used a
(129 x 129) grid for Re = 3200. In Fig. 8(a) and (b), stream function and vorticity contours are plotted, respectively and com-
pared with that in [26]. Present computations are shown on the top, while the results from [26] are shown at the bottom.
Once again one notes excellent qualitative match between the two sets of results. The corresponding quantitative compar-
ison between the two computations are shown in Fig. 8(c) and (d). In Fig. 8(c), the x-component of velocity along the vertical
centerline is shown plotted and in Fig. 8(d), the y-component of velocity along the horizontal centerline is compared be-
tween the two sets of computations. Despite the fact that far fewer points are taken for the present set of computation,
the agreement between the two is note-worthy.

To obtain a sense of absolute accuracy of different methods for this flow field, we have performed many calculations for
Re = 1000 using different grids. The maximum and minimum values of the computed stream function in the domain by the
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present method is compared with other benchmark results in Table 2. The spectral collocation results of Botella and Peyret
[27] using 160 terms Chebyshev polynomial representation to be the most accurate one for Re = 1000 and is used as a
benchmark for this flow field.

The results in [27] are the most accurate and one notes that the results of [26] match only up to second significant
digits with that in [27]. The method used in [26] is a low order method; the results suffer from the implicit filtering asso-
ciated with the multi-grid method used to solve SFE. We specifically note that in discretizing convectio